
Coordination of Multiple Non-Holonomic Agents
with Input Constraints

Apollon S. Oikonomopoulos∗, Savvas G. Loizou† and Kostas J. Kyriakopoulos∗
∗Control Systems Lab, National Technical Univ. of Athens, Greece †Mech. Eng. Dept., Frederick University, Cyprus

{apoikos,kkyria}@csl.mech.ntua.gr, s.loizou@frederick.ac.cy

Abstract— In this paper we present a multi-agent coordina-
tion algorithm suitable for systems with aircraft-like kinematic
constraints. A model of a system of input-constrained non-
holonomic agents is constructed, suitable for use with formal
verification tools. The agents considered are uniform and
have bounded velocities and limited turning capabilities. We
demonstrate how a model checker can be used to generate a
counterexample trace for such a system, usable as a trajectory
that satisfies our safety and liveness requirements.

I. INTRODUCTION

Multiple agent systems have been a topic of particular
importance in the fields of robotics and control theory. The
inherent complexity and the need for safety guarantees has
led to the development of a multitude of algorithms both,
in the continuous and in the discrete domain. A special
category of agent systems are the input-constrained non-
holonomic vehicles, e.g. unicycles with bounded linear and
angular velocities. These systems represent a number of real-
world vehicle systems, including aircraft at cruising altitude
and sea vessels.

A number of approaches has been published, dealing with
safe navigation of multiple-agent non-holonomic systems.
In the continuous domain, most approaches are potential-
field-based and, especially, navigation-function-based [1].
Loizou et al. [2] introduced a potential field-based approach
for multiple holonomic agents, which was extended in [3]
to non-holonomic agents. Although continuous approaches
provide solid theoretical proof, they are difficult to imple-
ment in real-world situations, where arithmetic precision
and computational power are limited. Furthermore, as they
yield stabilizing feedback control laws, it is very difficult to
capture the notion of time and handle agent systems with
low-bounded velocity. Finally, they have inherent difficulty
in dealing with complex obstacles that cannot be mapped to
classes of simple obstacles via suitable transformations.

Apart from the purely continuous approaches, there have
been many works in recent years focused on studying mul-
tiple agent systems in the context of hybrid systems. In [4],
the authors study the safety properties of multiple-aircraft
systems modeled as hybrid systems.

With the advent of powerful formal verification tools,
there has been interest in taking advantage of the expressive
power and verifiability of Temporal Language propositions
for motion planning problems. In [5] the authors introduce a
way to synthesize feedback controllers for multiple mobile

agents. The authors of [6] use Temporal Logic formulas
to construct high-level motion tasks, while [7] presents a
method to convert English language sentences, through Lin-
ear Temporal Logic specifications, into high-level motion-
planning objectives. In [8], the UppAal model checker [9]
was successfully employed to model and verify the operation
of a group of holonomic agents under a simple control law.
Current research trends in incorporating symbolic methods
in robot motion planning are summed up by Belta et al. in
[10].

In this paper, a discrete model of a system with input-
constrained non-holonomic agents is constructed. The system
is by construction and due to the kinematic constraints (low
and high velocity bounds and bounded angular velocity)
known not to be generally safe, i.e. inter-agent collisions
are possible and sometimes inevitable. The model of the
system is used with a model checker to search for at least one
counterexample, i.e. a set of safe trajectories that converge
to the goal and use the counterexample trace provided by the
model checker. Furthermore, a simple algorithm is provided
to resolve conflicts around an initial set of trajectories ob-
tained by other means, such as a shortest-path graph search.
Simulation results are provided, demonstrating the feasibility
of the proposed methods.

The rest of this paper is structured as follows: Section II
introduces the problem topology. In Section III the model
of the agent as a hybrid system is introduced. Section
IV describes the partitioning scheme used to abstract the
workspace. Subsequently, Section V describes the problem’s
reduction to the abstract discrete space. Section VI outlines
the collision detection algorithm. In Section VII an imple-
mentation of the system is described, which is modified in
Section VIII to accommodate lower computational complex-
ity. Simulation results are presented in Section IX and the
paper concludes with Section X.

II. PRELIMINARIES

We define the set of identical agents, A = {ai|i =
1, 2, . . . , n}. Each agent has a position, xi = [x y]T ∈ W ⊂
R2 and an orientation, θ ∈ [0, 2π), referenced from a fixed
coordinate system, where W is the problem’s workspace,
assumed to be finite. Each agent has a starting position,
xs = [xs ys], a starting orientation, θs, a goal position,
xd = [xd yd] and a goal orientation, θd.

Preprint IEEE International Conference on Robotics and Automation, Kobe, Japan, May 12-17 2009

The agents are planar and non-holonomic, modeled as
points in W , with the kinematics of a unicycle:

[ẋ ẏ θ̇]T = [u cos θ u sin θ ω]T

where the inputs are u, the linear velocity, and ω the angular
velocity of the agent.

The agents’ kinematics are subject to the following restric-
tions:

0 < umin <u < umax (1)
−ωmax <ω < ωmax, ωmax > 0 (2)

These constraints apply to a wide variety of vehicle
systems, such as aircraft in cruising altitude, sea vessels,
heavy vehicles, etc.

Throughout the rest of this paper, a positive sign on
angles and angular velocities will denote counter-clockwise
revolution.

III. AGENT MODEL

We now proceed to model the agent, using the notation in
[11]. Apart from the agent’s position, x, and orientation, θ,
each agent is also assigned a continuous variable, τ ∈ T ⊂
R+ called clock. Thus, the agent is a hybrid automaton,

H = {X,X0, XF , F, E, Inv,G,R} (3)

where
• X = Q × XC is the state space, where Q =
{qI , qS , qL, qR, qF } is the set of discrete states, and
XC = T ×W × [0, 2π) the set of continuous states.

• X0 ⊆ X is the set of initial states
• XF ⊆ X is the set of final or accepting states,
• F : Q → XC yields a vector field F (q, ·) for each

discrete state,
• E ⊆ Q×Q is the set of discrete transitions
• Inv : Q → 2XC yields the invariant of each discrete

state,
• G : E → Q× 2XC assigns to each transition (q1, q2) ∈
E a guard of the form {q1} × V, V ⊆ Inv(q1). Each
transition’s guard is the prerequisites for the transition
to be enabled.

• R : E → Q× 2XC assigns to each transition (q1, q2) ∈
E a reset of the form q2 × U, U ⊆ Inv(q2).

We will proceed to describe each of these individually.

A. Discrete states

The system comprises 5 discrete states:
qI Initial state.
qS Straight-travel state. In this state the agent

moves forward along a straight path.
qL(qR) Left- (right-) turning state. In this state the

agent performs a counter-clockwise (clock-
wise) turn of constant curvature.

qF Final state. In this state the agent has reached
the goal point.

According to the definitions of Section II, the sets of initial
and final states are X0 = {(qI , 0, (xs, ys), θs)} and XF =
{(qF , ·, (xd, yd), θd)} respectively.

S

S

L

L

F
L

L

F

R

FSS

R

R

R

qI qS

qR

qL qF

Fig. 1. The hybrid system’s discrete transitions. Labels L, S, R and F
indicate that the transition leads to qL, qS , qR and qF respectively.

B. Vector fields

All discrete states assign a vector field that governs the
clock’s evolution, τ̇ , 1 No assumptions are made about
states qI and qF , as they are assumed to lie outside the scope
of the problem. States qS , qL, qR, each assign one vector field
that drives the agent:

ṗ =

24 ẋ
ẏ

θ̇

35 =

8><>:
[u0 cos θ u0 sin θ 0]T , q = qS

[u1 cos θ u1 sin θ ω1]
T , q = qL

[u1 cos θ u1 sin θ − ω1]
T , q = qR

(4)

We require that the following must hold:

u1 =

√
3π

6
u0, ω1 =

2

3a
u1 =

√
3π

9a
u0 (5)

where a is a parameter discussed in the next section. The
choice of u0 is arbitrary, as long as u0, u1 and ω1 satisfy
eqns. (1) and (2). The above choices of u0, u1 and ω1 ensure
properties that will be described in the sequel.

C. Transitions

The transitions allowed are depicted in fig. (1). The agent
is allowed to turn either left or right, or perform a straight
motion, whichever state it might be in, until it reaches its
goal.

D. Guards, Resets and Invariants

Each transition (q1, q2) ∈ E has a guard condition on
the clock: G(qI , ·) = {τ = 0}, G(qL, ·) = G(qR, ·) =
G(qS , ·) = {τ ≥ 1}

The transitions to the final state, qF , have an additional
guard, G(·, qF) = {x = xd ∧ θ = θd}

With every transition a reset of the clock is performed:
R(·, ·) = {τ := 0}. Finally, the following invariants are
assigned to the states: Inv(qI) = {τ ≤ 0, (x, y) ∈ W}
Inv(qL) = Inv(qR) = Inv(qS) = {τ ≤ 1, (x, y) ∈ W}
The invariant in state qI forces an immediate transition upon
start, whereas the invariants in states qL, qR and qS together
with the respective guards force transitions to happen in 1
time-unit intervals.

Preprint IEEE International Conference on Robotics and Automation, Kobe, Japan, May 12-17 2009

IV. WORKSPACE PARTITIONING

In this section we will present the partitioning scheme that
will map the continuous workspace, W into a discrete grid.

We partition the euclidean plane in identical, non-
overlapping cells, Pi. Such a partitioning, or tessellation, is
possible in a regular fashion using either triangles, rectangles
or hexagons. As will be demonstrated below, the hexagonal
regular tessellation offers significant advantages. Thus the
workspace cells Pi are regular hexagons of side a, laid out
on W such that:

n[
i=1

Pi =W; Pi ∩ Pj = ∅, ∀i, j ∈ {1, . . . , n : i 6= j}

We denote the set of cells, Π = {Pi}.

(0 , 0)
(1 , 1)

(2 , 0)
(3 , 1)

(4 , 0)
(5 , 1)

(0 , 2)
(1 , 3)

(2 , 2)
(3 , 3)

(4 , 2)
(5 , 3)

Fig. 2. Coordinates on the {6,3}-grid

This regular hexagonal tessellation generates a canvas
of non-aligned rows and columns, known as a {6,3}-grid.
Throughout the rest of this paper, the coordinate system
depicted in fig. 2 shall be used to identify the cells. For
each partition, a tuple (i, j) ∈ Z2 describes its position on
the grid. Valid cells are only those with (i+ j) mod 2 = 0.
By convention, we set the center of cell (0, 0) at the origin
of W . i increases along the x-axis of W with the same sign
and j increases along the y-axis of W with the same sign.
The position of the center of every other cell, (i, j) mapped
onto (x, y) ∈ W through the following transformation:»

x
y

–
=

» 3
2
a 0

0
√

3
2
a

– »
i
j

–

On each cell we define 6 “input ports”, one at the center of
each side, as depicted in fig. 3. Based on the numbers of the
ports, we define the set D of directions, D , {0, 1, 2, 3, 4, 5},
with each direction being perpendicular to the corresponding
port’s edge and facing towards the cell’s center (fig. 3).

Furthermore, we define the set of motion primitives,M ,
{−1, 0, 1}, to denote a CCW 60◦-arc, straight motion, and
a CW 60◦-arc respectively, as depicted in fig. 3. Both arcs
have a radius of 3

2a. The values obtained in eqns. (5) by
substituting the hexagon side length, a, ensure that all three
motion primitives last exactly 1 time unit per clock τ . The
choice of hexagon side is arbitrary, as long as eqns. (5) satisfy
eqns. (1) and (2) respectively. However, it should be noted

0
1

2
3

4

5a

0
1

2
3

4

5
3
2 a

π
3

Fig. 3. The input ports of the hexagonal regions, together with the motions
corresponding to a left turn (red), straight motion (green) and a right turn
(blue). Note the arrow indicating the direction assigned to port 5 on the left.

that the choice of a has a direct impact on the feasibility of
the problem: too large a value will cause a coarse partitioning
of the workspace, and thus poor space utilization. On the
other hand, too low a value will cause a very fine partitioning
which will be computationally demanding. Thus, a should
be chosen as low as the agent kinematics allow in cluttered
environments, where space is scarce, and can be chosen
higher in more sparse problems.

This choice of ports, directions and motion primitives has
the property that, once on a cell’s d ∈ D port and taking
motion m ∈M, the agent will reach another cell’s (d+m)
mod 6 port with the corresponding direction. This property
is modeled by the direction change function h : D×M→ D:
h(d,m) = (d+m) mod 6

1
(0,0)

1

(1,1)

2

(2,0)

1

(3,1)

0
1

-1

Fig. 4. Motion on the {6,3}-grid. Colored numbers correspond to the
respective cell’s input port, pi, and the numbers in bold indicate the action
mi ∈ M taken during the corresponding segment. Note that pi+1 =
(pi +mi) mod 6.

Furthermore, we define the cell transition function, g :
Z2 ×D ×M→ Z2 ×D:

g(i, j, d,m) =

8>>>>>>><>>>>>>>:

(i, j + 2, 0), h(d,m) = 0

(i+ 1, j + 1, 1), h(d,m) = 1

(i+ 1, j − 1, 2), h(d,m) = 2

(i, j − 2, 3), h(d,m) = 3

(i− 1, j − 1, 4), h(d,m) = 4

(i− 1, j + 1, 5), h(d,m) = 5

(6)

Function g yields the next-step port if an agent is in cell
(i, j), port d and takes motion m. The traversal of the
workspace grid can be seen in Fig. 4.

Next, we define a trajectory P as a result of a motion
sequence M = {mi ∈ M, i = 1, ..., n} applied from a
given starting point X0 ∈ Π×D as:

P(X0,M) = {Xi : Xi = g(Xi−1,mi), i = 1, ..., n}
Finally, as can be seen on fig. 4, each port belongs to

two adjacent cells. We define the port identification function,
r : Z2 ×D → I:

r(i, j, d) =

8>>>>>>><>>>>>>>:

(2i, 2j − 2) if d = 0

(2i− 1, 2j − 1) if d = 1

(2i− 1, 2j + 1) if d = 2

(2i, 2j + 2) if d = 3

(2i+ 1, 2j + 1) if d = 4

(2i+ 1, 2j − 1) if d = 5

(7)

where (i, j) ∈ Z2 is a valid cell and d ∈ D is a port number.
This function uniquely identifies each port and will be used
for collision detection in the sequel.

V. REDUCTION TO THE DISCRETE SPACE

The suitable choice of the vector fields in eq. (4), allows
the agent to traverse a cell of the workspace in one clock unit,

Preprint IEEE International Conference on Robotics and Automation, Kobe, Japan, May 12-17 2009

τ := 1

(i, j, d) := (is, js, ds)

i = id ∧ j = jd ∧ d = dd

(i, j, d) := g(i, j, d,m), τ := 0
τ ≥ 1

qFqN

Fig. 5. The timed automaton representing a single agent in the partitioned
workspace

regardless of the motion primitive performed. We require that
all agents start at the same instant from their starting position.
We further require that their start and end configurations
coincide with cell port positions, and can thus be specified as
(iis, j

i
s, d

i
s) ∈ Z2 ×D and (iid, j

i
d, d

i
d) ∈ Z2 ×D respectively.

This makes all transitions on the grid synchronized and a
reduction of the motion in the continuous workspace, to a
motion in the discrete grid is possible.

The agent’s hybrid automaton can thus be reduced to
a timed automaton [12], A = {N,C,Σ,B, lo, E, I,G,R},
where N is a finite set of discrete locations, C is a finite
set of real-valued variables called clocks, Σ is an alphabet
of events or actions, B(C) is a set of relations in C called
clock constraints, lo is the initial location, E ⊂ N ×B(C)×
Σ × 2C × N is the set of edges and I : N → B(C) is the
set of invariants assigned to each location, G : E → B(C)
is the set of guards enabling a transition and R : E → 2C

is the reset map of the transitions.
We shall be using four (4) clock variables, i, j, d, τ . The

first three, i, j, d will be used to designate the cell and the
port the agent is currently at. τ will be used as a wall clock.
The laws governing the evolution of i, j, d and τ , are i̇ =
j̇ = ḋ , 0 and τ̇ , 1, respectively.

Our system has only two discrete states, or locations,
qN or moving denoting normal motion, and qF or done
denoting that the agent has reached its target. The input
alphabet, Σ, consists of 3 events, {−1, 0, 1}, denoting a left
turn, straight motion and right turn respectively, as in M.
The system’s locations, guards and transitions can be seen
in fig. 5. The set of guards is:

G(qN , qF) = {i = id ∧ j = jd ∧ d = dd}
G(qN , qN) = {τ = 1}

and the set of resets:

R(qN , qN) = {(i, j, d) := g(i, j, d,m)}
R(qN , qF) = {}

where m ∈ Σ the current event and g(·) the cell transition
function (6). Finally, the set of invariants, is:

I(qN) = {τ ≤ 1, (i, j) ∈ Π}
I(qF) = {}

Thus the multi-agent system can be formed as a network
of timed automata, {Ai}, with their time clocks, τi synchro-
nized against a wall clock, τ .

ok bad
collision()

Fig. 6. The observer automaton checking for collisions in the system. The
function collision() is described in section VI.

VI. COLLISION DETECTION

We will now proceed to define the collision detection
algorithm. Given the partitioning of the workspace, there are
two classes of possible collisions. Two agents may either
traverse the same cell at the same time interval, which is
viewed as a collision, or end up on the same port coming
from the two adjacent cells. These collision classes can be
detected using the following algorithm:
1 f u n c t i o n c o l l i s i o n (a g e n t s)
2 c e l l s := {}
3 nodes := {}
4 f o r a g e n t in a g e n t s :
5 i f a g e n t . p o s i t i o n in keys (c e l l s) :
6 re turn true
7 e l s e :
8 c e l l s [a g e n t . p o s i t i o n] := 1
9 i f a g e n t . node in keys (nodes) :

10 re turn true
11 e l s e :
12 nodes [a g e n t . node] := 1
13 re turn f a l s e

In this context, cells and nodes are hash-like data-
structures. The lookup and insert operations on a hash ap-
proach O(1) worst-case run-time. This implies that the above
version of the collision-detection algorithm approaches O(n)
worst-case run-time. This is especially important since colli-
sion detection has to take place in every state. Furthermore,
the hash-structure approach allows for trivially including any
number of stationary obstacles, by pre-populating the cells
hash with the cells occupied by stationary obstacles, without
increasing the overall complexity of the problem.

In order to implement collision detection, an additional
automaton, O, with two states is required, which will act
as an observer, accessing the agents’ clock values. This
automaton is shown in fig. 6. The collision() function serves
as a guard for the transition to the bad state, and may be
any of the two variants of the collision-detection algorithm
described above.

We can now formally state the problem:
“Given a set of n timed automata, {agenti} and an observer
automaton, collision, as described above, the system is safe
and live, if the following CTL proposition holds:

E

"
collision.ok U

 ^
i

agenti.done

! #
(8)

i.e. there is a set of collision-free paths that leads to
the convergence of all agents to their respective goals, or,
equivalently, there are n input sequences that drive all agents
to their goals without inter-agent collisions.”

VII. IMPLEMENTATION

We are now in position to formally verify our system. We
will be exploiting most model checkers’ ability to generate
traces of counterexamples in case a checked specification

Preprint IEEE International Conference on Robotics and Automation, Kobe, Japan, May 12-17 2009

fails. Our implementation is based on the NuSMV model
checker [13], which was selected primarily for its capabilities
and its easy integration with third-party software. Since the
agents’ transitions are synchronized and the timers are used
to store the agents’ positions on the grid, the problem is
within the modeling capabilities of NuSMV.

Using external, custom-developed software we generate
the description of the system and feed it to NuSMV. Sub-
sequently, NuSMV is asked to verify the negated version of
proposition (8):

¬E
"
collision.ok U

 ^
i

agenti.done

! #
(9)

i.e., there is no trajectory such that (eventually) the system
remains collision-free until every agent has reached its goal.

The model checker evaluates the proposition and returns
a trace of a counterexample if it finds one. Since the search
on the state-space is exhaustive, if there is a solution in
the designated state-space, it will be found. The results of
simulation runs are discussed in section IX.

VIII. MODEL CHECKING AS A LOCAL SOLVER

Although model checking systems with CTL specifications
is a decidable process, in some cases it may be desirable to
trade completeness for reduced complexity and use a model
checker as a local solver. In this section we demonstrate
a simple incremental algorithm that restricts the state-space
around a trivial set of trajectories, thus yielding faster results.
However, the algorithm presented in this section is not
complete. It may find a solution, but not finding one does not
imply one does not exist. In order to assure completeness,
a full state-space check must be performed, as described in
the previous section.

We will be obtaining an initial set of trajectories through
a search on a graph describing the connectivity of the cells’
ports. The restriction of the motion to only 3 primitives,
allows an agent to access one of exactly three adjacent cells
every time. Thus a directed graph modeling the connectivity
of the cells can be generated in a systematic way.

We shortly remind that, according to graph theory, a graph,
G is a set of vertices V and an associated set of unordered
pairs of vertices, E , called edges. Two vertices, vi, vj ∈ V ,
are said to be connected iff (vi, vj) ∈ E . The edges of a
graph may have real numbers wi called weights associated
with them. A directed graph is a graph whose set of edges,
E comprises ordered pairs of vertices.

We can now construct the graph denoting the connectivity
of the workspace cells. The vertices of the graph are the
tuples v = (i, j, d), with (i, j) valid workspace cells and
d ∈ D. For each vertex vi, the edges (vi, g(vi,m)),m ∈
{−1, 0, 1} are created.

A set of trivial trajectories, {Pi}, is obtained by perform-
ing an ordinary graph search, using e.g. A* or Dijkstra’s al-
gorithm for each agent independently. This set of trajectories
is not necessarily collision-free. Subsequently, the following
algorithm tries to incrementally resolve all conflicts, within

a short time-window. A short description of the algorithm
follows.
1 whi le t rue :
2 i f not c o l l i s i o n (a g e n t s . t r a j e c t o r i e s) :
3 break
4 e l s e :
5 segmen t s := []
6 c o l l i s i o n := f i r s t c o l l i s i o n (a g e n t s . t r a j e c t o r i e s)
7 i f l i v e l o c k () :
8 break
9 c o l l i s i o n p o i n t := c o l l i s i o n p o i n t (c o l l i s i o n)

10 a g e n t s := g e t a g e n t s (c o l l i s i o n)
11 f o r a g e n t in a g e n t s :
12 segment :=
13 segment (a g e n t . t r a j e c t o r y , c o l l i s i o n p o i n t , window)
14 segmen t s . append (segment)
15 new segments := d e c o n f l i c t (segmen t s)
16 f o r a g e n t in a g e n t s :
17 a g e n t . t r a j e c t o r y := r e p l a c e (segment , new segment)

• collision() checks whether there is a collision among
the agents’ trajectories, as per section VI.

• first collision() returns the temporally first collision
among all collisions.

• collision point() returns the cell in which the collision
takes place, in the grid coordinate system (i, j), as per
section IV and get agents() returns the set of all agents
participating in the collision.

• segment() returns a segment of size window, centered
around the collision point. If the window contains the
start or the end of a trajectory, the segment is truncated
accordingly.

• deconflict() attempts to resolve the collision within the
specified window, using the model-checking approach
described above. In this context, the segments of the
colliding agents that fit in the window are treated as a
new system, whose specification is fed to the model
checker. The model-checker verifies the specification
and searches for a counterexample as proposed in
section VII. Subsequently, replace() replaces the con-
flicting segments with their collision-free replacements
calculated by the model checker in the previous step.

• livelock() detects whether the algorithm is engaged in a
livelock. Since the resolution of a collision may create
another collision point, it is possible that a livelock
will emerge. Livelocks can be detected by remembering
which collision points have been handled so far and
which agents were participating and checking for du-
plicates.

The process runs iteratively, resolving collisions that appear
first in the problem, until there are no more collisions left
to resolve. However, as was pointed out earlier, the use of
a model checker as a local solver implies a trade-off: The
algorithm tries to solve the problem in a limited space, where
a solution may not exist. If a solution does not exist, then
the problem has to be solved anew in the whole space.

Simulation results are discussed in the following section.

IX. SIMULATION RESULTS

Fig. 7(d) depicts the solution given to a three-agent prob-
lem by feeding the complete model of the system to the
model checker. Figs. 7(a-c) give detailed, snapshots of the
resulting trajectories near what would otherwise have been

Preprint IEEE International Conference on Robotics and Automation, Kobe, Japan, May 12-17 2009

0

1

2

(a) t = 3

0

1

2

(b) t = 5

0

1

2

(c) Goals reached

Fig. 7. Snapshots of the solution in a three-agent scenario. The filled
circles represent the start positions, circle outlines mark the goal positions.

a double collision point. This solution is the result of a full
state-space search performed by the model checker on the
complete 3-agent system. Every snapshot shows the initial
position of the agents (opaque circles), the trajectory traveled
so far and the current position (last arrow tip). Notice that
both collision cases, as outlined in section VI are avoided.

Fig. 8 shows snapshots from the run of the hierarchi-
cal algorithm described in section VIII. The initial set of
trajectories was obtained by a shortest-path search on the
graph constructed according to section VIII, using Dijkstra’s
algorithm is shown in 8(a). The agent start positions are
marked using circles, labeled with a corresponding identi-
fication number. Note that the graph search does not make
any collision checks. The initial set of trajectories contains
collisions between agents 0 and 1, 1 and 2, and 2 and 3.

The collision points are identified using the algorithm pro-
vided in section VI and the temporally first collision, the one
between agents 1 and 2 is considered first. A model checking
specification is generated to replace the path segments of 5
time-steps around the collision point. The collision points of
the new trajectory set are re-calculated and the temporally
first collision point is chosen, this time between agents 0
and 1. Both collisions are resolved in Fig. 8(b) and Figs.
8(c) - 8(d) show the resolution of the final conflict between
agents 2 and 3. The initial and final positions of the agents
were chosen so that the agent paths in cases (0,1) and (2,3)
coincided and resulted in a heads-on collision, in order to
demonstrate the ability of the algorithm to handle symmetry
and new collision points that emerge as a side-effect of
previous de-confliction operations. The simulation was based
on custom-written Python software performing the graph
search and system specification generation and NuSMV as
a model checker backend. The runtime was 20 seconds on a
1.8GHz Core2Duo CPU. For comparison, using NuSMV on
the whole problem did not yield any results within 5 hours.

X. CONCLUSIONS AND FUTURE RESEARCH

In this paper we demonstrated how a problem with
multiple non-holonomic agents can be reduced - through
appropriate abstraction - to a form solvable using formal
verification tools. Furthermore we introduced a way to use
this approach to refine a trivial solution. The algorithms
proposed were backed by non-trivial simulation data.

0

1
2

3

4

5

(a)

0

1
2

3

4

5

(b)

0

1
2

3

4

5

(c)

0

1
2

3

4

5

(d)

Fig. 8. A run of the incremental algorithm proposed in Section VIII. The
filled circles mark the agents’ initial positions and the circle outlines mark
their respective goal positions. See Section IX for a detailed discussion.

Future research directions include the extension to a
distributed version, new ways to reduce the computational
complexity of the system, ways to incorporate “user” require-
ments as to the trajectories generated and the incorporation
of complex stationary obstacles and non-cooperating agents.

ACKNOWLEDGEMENTS

The first and third author of this paper want to acknowl-
edge the contribution of the European Commission through
contract iFLY.

REFERENCES

[1] E. Rimon and D. E. Koditschek, “Exact robot navigation using artifi-
cial potential fields,” IEEE Transactions on Robotics and Automation,
vol. 8, no. 5, pp. 501–518, October 1992.

[2] S. G. Loizou and K. J. Kyriakopoulos, “A feedback based multiagent
navigation framework,” International Journal of Systems Science, vol.
37 (6), pp. 377–384, 2006.

[3] ——, “Navigation of multiple kinematically constrained robots,” IEEE
Transactions on Robotics, vol. 24 (1), pp. 221–231, 2008.

[4] C. Tomlin, G. J. Pappas, and S. Sastry, “Conflict resolution for air
traffic management: A study in multiagent hybrid systems,” IEEE
Transactions on Automatic Control, vol. 43, no. 4, 1998.

[5] S. G. Loizou and K. J. Kyriakopoulos, “Automatic synthesis of multi-
agent motion tasks based on ltl specifications,” in Proceedings of the
43rd IEEE Conference on Decision and Control. IEEE, 2004.

[6] G. E. Fainekos, H. Kress-Gazit, and G. J. Pappas, “Temporal logic
motion planning for mobile robots,” in Proceedings of the 2005 IEEE
International Conference on Robotics and Automation, April 2005, pp.
2020–2025.

[7] H. Kress-Gazit, G. Fainekos, and G. J. Pappas, “From structured
english to robot motion,” in Proceedings of the 2007 IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2007.

[8] M. M. Quottrup, T. Bak, and R. Izadi-Zamanabadi, “Multi-robot
planning: A timed automata approach,” in 2004 IEEE International
Conference on Robotics and Automation, 2004.

[9] J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, and W. Yi,
“UPPAAL — a Tool Suite for Automatic Verification of Real–Time
Systems,” in Proc. of Workshop on Verification and Control of Hybrid
Systems III, ser. Lecture Notes in Computer Science, no. 1066.
Springer–Verlag, Oct. 1995, pp. 232–243.

[10] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, and
G. J. Pappas, “Symbolic planning and control of robot motion,”
IEEE Robotics and Automation Magazine - special issue on Grand
Challenges of Robotics, vol. 14, no. 1, pp. 61–71, 2007.

[11] G. J. Pappas, “Hybrid systems: Computation and abstraction,” Ph.D.
dissertation, Univ. California at Berkeley, 1998.

[12] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical
Computer Science, vol. 126, pp. 183–235, 1994.

[13] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella, “NuSMV Version 2: An
OpenSource Tool for Symbolic Model Checking,” in Proc. Interna-
tional Conference on Computer-Aided Verification (CAV 2002), ser.
LNCS, vol. 2404. Copenhagen, Denmark: Springer, July 2002.

Preprint IEEE International Conference on Robotics and Automation, Kobe, Japan, May 12-17 2009

